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a b s t r a c t

The paper presents a numerical investigation of the central collision of two equal-sized droplets in a gas-
eous phase. The investigation is based on the numerical solution of the Navier–Stokes equations in their
axi-symmetric form using the finite volume technique. The Volume of Fluid Method (V.O.F) is employed
for tracking the liquid–gas interface. An adaptive local grid refinement technique developed recently is
used in order to increase the resolution around the interface. By using two V.O.F indicator functions
the identity of each droplet is preserved and can be detected after droplet contact until coalescence.
The results are compared with available experimental data and provide a very detailed picture of the col-
lision process, the ligament formation and dimensions, the pinch off mechanism and the creation of the
satellite droplet. The conversion of the droplet’s kinetic energy to the surface energy and vise versa, the
energy viscous dissipation as well as the maximum deformation of the droplets are also evaluated.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The binary droplet collision is of importance in a variety of
engineering areas, such as spray cooling, spray coating and direct
fuel injection into internal combustion engine cylinders. In fact,
the present research work is stimulated by the last area. Adam
et al. [1], Park [2], Brazier-Smith et al. [3], Ashgriz and Poo [4]
performed a series of experiments using water droplets in order
to interpret the mechanisms governing cloud and raindrop
growth. The collision of hydrocarbon droplets was studied by
Ashgriz and Givi [5,6], who used n-hexane in burning and inert
environments as well as Brenn and Frohn [7,8] who studied the
collision and merging of two droplets of propanol-2, water and
n-hexadecane. Willis and Orme [9] conducted experiments of
droplet collisions in a vacuum, devoid of aerodynamic effects.
Jiang et al. [10], focusing on spray combustion, used hydrocarbon
droplets (heptane, decane, dodecane, tetradecane and hexadec-
ane), whilst Qian and Law [11] investigated the effects of ambient
pressure, density and viscosity on the evolution of the droplet
collision process.

The governing non-dimensional parameters of the central bin-
ary collision phenomenon are the droplet Weber number (We)
and the Reynolds number (Re). The physical criterion that deter-
mines the outcome of the collision (i.e., bouncing or coalescence)
is the gap size between the droplets. A size comparable to that of
the molecular interaction, typically of the order of 102 Å (Mackay
and Mason [12] and Bradley and Stow [13]) results in coales-
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cence, otherwise the droplets will bounce. The collision outcome
depends also on the viscosity and density of the liquid and gas
phases as well as on the surface tension, indicating the signifi-
cance of the rheological properties. If the initial kinetic energy
of the droplets is very low (more precisely if the droplet Weber
number is very low), the droplets coalesce permanently, without
bouncing, since there is sufficient time to expel the intervening
gas layer, which is the barrier of coalescence (regime I). Increas-
ing the Weber number, droplet deformation occurs and the drop-
lets experience bouncing (regime II). If the Weber number is
further increased, the droplets coalesce permanently, with a time
delay depending on the Weber number. If the kinetic energy is
high (i.e., high Weber number) the droplets coalesce immediately.
The coalesced droplet deforms into a disk and oscillates until it
relaxes to a spherical droplet due to the surface tension forces
(regime III). At the transition regime IV, the collision energy over-
comes the surface energy and oscillation causes the droplet to
separate into two droplets. Further increasing the Weber number
in regime IV makes collision energy so high, that a ligament is
created between the two droplet masses that eventually breaks
into two or more satellite droplets. The above description is based
on the study of Qian and Law [11], who examined detailed pho-
tographs of the collision process. The present numerical predic-
tions are assessed against their experiments. Ashgriz and Poo
[4] showed that for head-on collision and large Weber number,
the number of satellite droplets resulting from the droplet sepa-
ration (phase IV) also increases.

Previous numerical studies by Tsamopoulos and Brown [14]
and Patzek et al. [15] have focused on the nonlinear oscillations
of droplets assuming an inviscid collision process. Viscous
effects were investigated by both Foote [16], who used a
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Marker-And-Cell (MAC) method to solve the full Navier–Stokes
equations as well as Lundgren and Mansour [17], who used a
modified boundary integral method that accounts approximately
for the small viscous dissipation effects. According to Jiang et al.
[10] the energy dissipation U is independent of the Reynolds
number (i.e., viscosity) and depends only on the Weber number.
Their experiments however were limited to relatively small We-
ber numbers (We < 120). Recently however, Willis et al. [18]
conducted experiments of droplet binary collision for 10 and
30 cS viscosity liquids in a vacuum with Weber number as high
as 250. They found that the energy dissipation increased with
increasing fluid viscosity. The modeling of Dai and Schmidt
[19] extended the observations of Willis et al. [18] and reached
the conclusion that the rate of dissipation (i.e., oU/ot) increases
with increasing viscosity, while the maximum deformation and
energy dissipation decrease with increasing Reynolds number,
suggesting that the effect of viscosity on the maximum defor-
mation becomes insignificant at sufficiently high Reynolds
numbers.

A variety of numerical methods have been used for the simula-
tion of the binary droplet collision. Unverdi and Tryggvason
[20–22] developed the front tracking method, Nobari et al. [23]
implemented the method in axi-symmetric setting and Nobari
and Tryggvason [24] extended it in three dimensions. Lafaurie
et al. [25] used the SURFER method, Lattice Boltzmann models
were used by Drtina et al. [26] and Schelkle and Frohn [27,28],
while Rieber and Frohn [29] used the V.O.F method.

The present investigation studies numerically the central col-
lision of two hydrocarbon droplets of equal size for various
Weber and Reynolds numbers. Assuming central collision, the
axi-symmetric form of the Navier–Stokes equations can be
solved. The equations are discretised with the finite volume
technique whilst the Volume of Fluid Method is used for the
tracking of the liquid–gas interfaces. By using two V.O.F indica-
tor functions, the identity of each droplet is preserved and can
be detected after contact until coalescence (should this occur).
Similar to previous studies, the time instant for droplet coales-
cence is provided externally, according to the respective exper-
imental data.

2. Mathematical formulation

2.1. The V.O.F indicator function ‘‘a”

The flow induced by the central binary collision of two droplets
is considered as two-dimensional axi-symmetric (as the experi-
ments suggest for the We number considered), incompressible
and laminar. The two-phase flow is mathematically expressed by
the Navier–Stokes equations (that include extra terms to account
for the surface tension) and the continuity equation. Phase 1 refers
to the liquid phase i.e., the two droplets and phase 2 to the sur-
rounding gas phase. For identifying each phase separately a vol-
ume fraction, denoted by ‘‘a”, is introduced following the Volume
of Fluid Method (V.O.F) of Hirt and Nichols [30]. The volume frac-
tion ‘‘a” is defined as:

a ¼ Volume of fluid1 ðliquid phaseÞ
Total volume of the control volume

ð1Þ

The values of density ‘‘q” and dynamic viscosity ‘‘l” are calcu-
lated using linear interpolation between the values of the two
phases weighed with the volume fraction ‘‘a” i.e.,

q ¼ aqliq þ ð1� aÞqgas

l ¼ alliq þ ð1� aÞlgas

ð2Þ

where the ‘‘a”-function is equal to:
aðx; tÞ ¼

1; for a point ðx; tÞ inside liquid ðfluid1Þ
0; for a point ðx; tÞ inside gas ðfluid2Þ
0 < a < 1; for a point ðx; tÞ inside the

transitional area between the two phases

8>>><
>>>:

ð3Þ

Following Hirt and Nichols [30], the material derivative of the
V.O.F function ‘‘a” is zero i.e.:

@a
@t
þ~u � ra ¼ 0 ð4Þ

The momentum equations expressing both phases are written
in the form

@ðq~uÞ
@t
þr � ðq~u�~u�~TÞ ¼ q~g þ~f r ð5Þ

where ~u is the velocity vector, ‘‘t” is time, ~T is the stress tensor and
fr is the volumetric force due to surface tension. The value of ‘‘fr”,
following the CCS method of Brackbill et al. [32], is equal to
fr ¼ r � j � ðraÞ, where r is the surface tension (for immiscible flu-
ids the value is always positive) and j is the curvature of the inter-
face region.

The V.O.F methodology has been successfully applied by Niko-
lopoulos et al. [31] to study the splashing of a single droplet onto
a wall film. An adaptive local grid refinement technique, proposed
recently by Theodorakakos and Bergeles [33] and used in Nikolop-
oulos et al. [34], is also employed in the present investigation in or-
der to enhance accuracy in the areas of interest (i.e., the interface
between the two phases) while reducing the computational cost.
The gas–liquid interface is characterized by high flow gradients,
so in order to achieve the desired level of resolution, the cells are
sub-divided into a prescribed number of layers in both sides of
the interface. In most cases five levels of local refinement are used.
A new locally refined mesh is created every 10 time steps following
the liquid–gas interface motion and distortion. As a result, the
interface is always resolved by the finest mesh.
2.2. Second VOF indicator function

If a single V.O.F variable is used then, upon contact, the two
droplets will immediately coalesce, which is not correct for low
Weber number impact. In order to overcome this problem, a sepa-
rate V.O.F variable is assigned to each droplet, i.e., ‘‘a1” for the first
droplet and ‘‘a2” for the second. Consequently each droplet is sep-
arately tagged thus eliminating the merging of the two droplets at
impact. Eqs. (1) and (3) are then reformulated to:

a1 ¼
Volume of droplet1

Total volume of the control volume

a2 ¼
Volume of droplet2

Total volume of the control volume

ð6Þ

The values of density and viscosity are calculated as a function
of ‘‘a”, using linear interpolation between the values of the two
phases:

q ¼ ða1 þ a2Þqliq þ ð1� a1 � a2Þqgas

l ¼ ða1 þ a2Þlliq þ ð1� a1 � a2Þlgas;
ð7Þ

where the ‘‘a”-function is equal to:

a1ðx; tÞ ¼

1; for a point ðx; tÞ inside liquid ðdroplet1Þ
0; for a point ðx; tÞ outside liquid
0< a1 < 1; for a point ðx; tÞ inside gas

transitional area between the two phases

8>>><
>>>:
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a2ðx; tÞ ¼

1; for a point ðx; tÞ inside liquid ðdroplet2Þ
0; for a point ðx; tÞ inside gas
0< a2 < 1; for a point ðx; tÞ inside the

transitional area between the two phases

8>>><
>>>:
a1ðx; tÞ þ a2ðx; tÞ ¼

1; for a point ðx; tÞ inside liquid ðcoalesced dropletÞ
0; for a point ðx; tÞ inside gas
0 < a < 1; for a point ðx; tÞ inside the

transitional area between the two phases

8>>><
>>>:

ð8Þ
The conservative form of each transport equation for the indica-
tor function ‘‘ai”=1,2 is written as:

@ai

@t
þr � ai~u ¼ 0; i ¼ 1;2 ð9Þ

’As it was mentioned in the introduction, a thin gas layer is
formed between the two approaching droplets. When the thickness
of the gas layer becomes comparable to the intermolecular spacing
(about 100–400 Å) the liquid surface ruptures and the approaching
droplets coalesce (Mackay and Mason [12] and Bradley and Stow
[13]). Even using the present technique of local grid refinement, such
a small length scale cannot be resolved. In the present investigation
the layer ruptures (numerically) at a prescribed time, according to
the corresponding experimental data, by simply removing the dou-
ble interface between the two droplets, leaving a single droplet with
an indented waist (Nobari et al. [23]). This instantaneous change in
topology is a gross approximation because the influence of molecu-
lar forces and the small isolated droplets that may be formed during
the rupture are not modeled. Furthermore, as the interface is rup-
tured the total volume and kinetic energy of the liquid phase are
not altered. However, there is a reduction in surface energy due to
the elimination of the common surface between the two droplets;
this energy is supposed to be lost when the ruptured film breaks into
small droplets which are finally dissipated.

2.3. The numerical solution procedure

The transport equations are solved numerically by the Finite
Volume Method using a collocated grid arrangement. The discretiza-
tion of the convection terms of the velocity components is based on a
high-resolution convection-diffusion differencing scheme (Gamma
scheme) proposed by Jasak [35],. The solution procedure for the
momentum and continuity equations is based on the SIMPLE algo-
rithm of Patankar and Spalding [36] with the modifications of Rhie
and Chow [37] to avoid pressure–velocity decoupling. Due to the
steep gradients of the V.O.F indicator function ‘‘a” which appear
particularly in the region of the interfaces, it was found necessary
to implement the compressive high-resolution differencing scheme
CICSAM proposed by Ubbink and Issa [38]. In contrast with other dis-
cretization schemes, which fail to capture the sharp but smooth
interface transition between the two fluids, the CICSAM scheme lim-
its the transitional area of the two fluids within two cells and
achieves good resolution of the transitional region. The time deriva-
tive was discretized using a second-order differencing scheme
(Crank–Nicolson). A demonstration of the non-diffusive character
of the CICSAM scheme can be found in Theodorakakos and
Bergeles [33].

2.4. Numerical details

The main parameters of the central binary collision process are
the droplet diameter Do the initial impact velocity Uo, the density q
and viscosity l of the liquid and gas as well as the surface tension
r. These variables are grouped in two dimensionless parameters,
the Weber (We) and Reynolds numbers (Re) defined as:
We ¼ oliqð2U0Þ2D0=r ð10Þ
Re ¼ oliq2U0D0=lliq ð11Þ

In order to implement computationally the collision process, there
are two alternatives:

(a) The droplets start suddenly with the collision velocities, de-
fined by the corresponding Weber number and are placed at a
small distance, at time t = 0. The corresponding gas velocity field
at time t = 0. is assumed to be zero. The continuity and momentum
equations are solved both for the gas and liquid phases at each
time step (very small time step, 10�06 s). Therefore, at each time
step both continuity and momentum equations are satisfied and
after three to four time steps the induced gas and liquid velocity
fields around the moving droplets are fully developed, well before
collision takes place.

(b) The droplets have initially zero velocities and are separated
by a long distance. An adjustable force is then used to drive the two
droplets closer and is turned off shortly before the impact takes
place after the collision velocities have been achieved (Nobari
et al. [23,24]).

In the present study alternative (a) was chosen in order to re-
duce the computer time, with collision velocity satisfying the value
of the Reynolds number of the numerical simulation of Nobari et al.
[23] and Nobari and Tryggvason [24] or of the experimental data of
Qian and Law [11].

The computational domain is shown in Fig. 1. The solution
domain is axi-symmetric (around the X axis), and the droplets
are initially placed one diameter apart. Both droplets have the
same velocity Uo, and diameter Do. At Y = 0, symmetry boundary
conditions are imposed, whilst for the other boundaries the normal
gradient is equal to 0. The experimental investigation of equally-
sized droplets of Qian and Law [11] forms the basis of the present
numerical simulation.

Table 1 summarizes the cases investigated. In cases A–D the
liquid phase is n-tetradecane and the gas phase is nitrogen at
atmospheric pressure. Cases A to C have been studied experimen-
tally by Qian and Law [11]. The droplet collision was assumed to be
isothermal at T = 21 �C. In the experiments for cases A, B and C the
collision was not ideally central as it is indicated by the small val-
ues of the impact parameter B (defined as B = X/D0, where X is the
lateral distance between the centers of the two droplets in a direc-
tion normal to the velocity).

For cases A to D, the ‘‘base” grid consisted of 1800 numerical
cells, as shown in Fig. 1, covering a rectangular domain with
dimensions Xtot = 6.5 Do, Ytot = 3.25 Do approximately. Five levels
of local grid refinement are used, resulting to a maximum num-
ber of 10,500 cells for cases A and B, 22,000 for case C and
32,000 for case D. The maximum refinement results in a cell size
of Do/300. Obviously, computations are more time efficient on
the present dynamically adaptive grid, than on the equivalent
fine resolution and uniform grid. Cases A, B, C and D would re-
quire approximately 1,845,120 number of cells in a uniform fine
grid.



Table 1
Cases examined.

Case We Re Ro = Do/2 (m) B (experimental) Computational domain (Xtot � Ytot) Number of grid nodes

A 8.6 105.9 1.53E-04 0.08 13.07Ro � 6.53Ro 60 � 30 (5 levels-local refinement)
B 19.4 158 1.51E-04 0.05 13.24Ro � 6.62Ro 60 � 30 (5 levels-local refinement)
C 61.4 296.5 1.68E-04 0.06 11.90Ro � 5.95Ro 60 � 30 (5 levels-local refinement)
D 123 423.76 1.68E-04 – 17.85Ro � 5.95Ro 60 � 30 (5 levels-local refinement)
E 61.4 24.5 1.68E-04 – 14.8Ro � 5.95Ro 126 � 50 (3 levels-local refinement)
F 61.4 29 1.68E-04 – 14.8Ro � 5.95Ro 127 � 50 (3 levels-local refinement)
G 61.4 33 1.68E-04 – 14.8Ro � 5.95Ro 128 � 50 (3 levels-local refinement)
H 61.4 70 1.68E-04 – 14.8Ro � 5.95Ro 129 � 50 (3 levels-local refinement)
I 61.4 131 1.68E-04 – 14.8Ro � 5.95Ro 130 � 50 (3 levels-local refinement)
J 61.4 228 1.68E-04 – 14.8Ro � 5.95Ro 131 � 50 (3 levels-local refinement)
K 61.4 404 1.68E-04 – 14.8Ro � 5.95Ro 132 � 50 (3 levels-local refinement)
L 61.4 498 1.68E-04 – 14.8Ro � 5.95Ro 133 � 50 (3 levels-local refinement)
M 61.4 903 1.68E-04 – 14.8Ro � 5.95Ro 134 � 50 (3 levels-local refinement)
N 61.4 1790 1.68E-04 – 14.8Ro � 5.95Ro 135 � 50 (3 levels-local refinement)
O 61.4 3570 1.68E-04 – 14.8Ro � 5.95Ro 136 � 50 (3 levels-local refinement)
P 61.4 7653 1.68E-04 – 14.8Ro � 5.95Ro 137 � 50 (3 levels-local refinement)
Q 61.4 11538 1.68E-04 – 14.8Ro � 5.95Ro 138 � 50 (3 levels-local refinement)

Fig. 1. The computational domain and the base grid with the five levels of local grid refinement around the interface.
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In order to investigate the grid dependency of the results, cases
A and B were also simulated using six levels of local refinement,
resulting in a minimum cell size equal to Do/600. The numerical re-
sults indicated that using five levels of local grid refinement for
case A, the hydrodynamic behaviour of the impacting droplets
did not change, with the magnitude of total velocity change being
only approximately 0.7% and the collision development to be
almost identical to that of the coarser grid. However the liquid
and gas velocities in the area between the two colliding droplets
had a difference of 40% (mainly due to the fact that the size of this
region tends to zero) but soon these differences were smoothed
out. The numerical simulations take around 2 days on a Pentium
4 with a 2.4 GHz processor.

Further to that, case Q (highest Reynold number) was run
for three and four levels of local refinement resulting in cell
sizes Do/135 and Do/270, respectively. The results were almost
identical, showing difference in droplet’s dimensions of less
than 1%.

3. Collision of two droplets of equal sizes

3.1. Bouncing of two equal-sized droplets, case A, low We number
impact

As discussed earlier, coalescence can not occur when the drop-
lets approach each other unless the gaseous film is ‘squeezed out’
and then contact is made. Clearly, the ‘discharging’ of the gaseous
layer, depends on the inertia of the droplets and the dynamics of
the flow including the pressure buildup within it. After completing
a wide range of experiments for tetradecane droplets in nitrogen
environment under atmospheric pressure, Qian and Law [11],
determined that for head-on collisions (B = 0) the critical We num-
ber, above which coalescence occurs, is around We = 14.3.

As the We number of case A (see Table 1) is below this critical
We number, the two droplets are expected to bounce off without
coalescence. Fig. 2a shows a sequence of photographs from the
experiments of Qian and Law [11] and the present simulations.
The deformation and the shape of the two colliding droplets at var-
ious time instants after contact are in very good agreement. In this
case no coalescence occurs, the two droplets retain their identity
during the collision process and a gas layer always exists between
them. In Fig. 2b the intervening gas layer between the two droplets
is clearly shown (t = 0.20) as it has been also found by Mackay and
Mason [12]. This layer remains there until the end of the receding
phase of the colliding droplets (t > 0.91). The width of the gas layer
is equal to 4.164 lm and it is resolved by at least three cells. Accord-
ing to Qian and Law [11] the gap between the droplets is estimated
to be of the order of ðqgR3

oU2
o=rÞ

1=2 which gives a value of 6.146 lm,
in rough agreement with the aforementioned value. It is interesting
to note that there is always a cusp in the contact region that indi-
cates that the two droplets have not coalesced yet.

As the two droplets approach each other, pressure in the air gap
increases, the liquid surfaces deform and flatten while gas is
squeezed out creating a sheet jet (Fig. 3, t = 0.10 ms). Surrounding
gas is entrained into this jet and on either side of the jet a vortex ring
is formed. These vortex rings remain close to the liquid surface dur-
ing the collision process. The strength of the vortices attains a min-
imum value at the time of maximum deformation (t = 0.43 ms), and
a maximum value at the first stages of the collision. The vortices
change rotational direction during the receding phase, as gas



a 
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0.10 0.20 0.28 0.34 0.54

0.65 0.76 0.91

experiments

experiments

simulations

simulations

t=0.20

Fig. 2. (a) Time evolution for two colliding droplets, Case A (We = 8.6, Re = 105.9) and (b) gas film entrapment between the two approaching droplets; experiment of Qian and
Law.

Fig. 3. Pressure and velocity field evolution for Case A (We = 8.6, Re = 105.9).
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accelerates to fill in the gap between the two separating droplets
(t > 0.43 ms).

It is interesting to notice the continuity of the velocity field
through the gas–liquid interface, as well as the well-defined inter-
face, an indication of the non-diffusive character of the CICSAM
discretization scheme of Ubbink and Issa [38]. The maximum gas
jet and liquid jet velocities are 656% and 154%, respectively, of
the droplet’s impact velocity. Fig. 3 also shows the distribution of
the pressure coefficient Cp within the droplets during collision. Cp

is based on the relative velocity of droplets i.e., Cp = DP/(0.5 qliq

(2Uo)2). Values of Cp up to 442% at the front stagnation point are
developed with the maximum pressure developing at the periph-
ery of the droplet-film contact area. Pressure builds up very fast,
and then decreases with time (Fig. 3).
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3.2. Coalescence of two droplets, case B, medium We number impact

In case B experiments suggest that coalescence of the two col-
liding droplets should take place due to the higher Weber number
compared with case A. According to Qian and Law [11] the cusp at
the rim of the droplets in the gap area disappears at the moment of
coalescence and a rounded profile is established. Based on this
observation the experiments suggest that coalescence takes place
between t = 0.31 ms and t = 0.35 ms. In the present simulation
the prescribed time of coalescence is fixed to 0.31 ms. The pre-
dicted deformation and shape of the two colliding droplets at
various time instants after contact is compared with experiments
in Fig. 4. It can be seen that the overall time evolution of the drop-
let’s shape is well captured.

As in the previous case, a sheet of gas jet between the two
approaching droplets is formed. On either side of the jet, one vor-
tex ring is formed, whose strength is higher compared to the pre-
vious case A (Fig. 5, t = 0.08 ms). The maximum gas and liquid jet
velocities are 700% and 183%, respectively, of the droplet’s impact
relative velocity. The maximum pressure coefficient is 321% and is
found at the periphery of the droplets contact area. In addition, just
after coalescence, a nitrogen gas bubble is entrapped inside the
coalesced droplet. At time t = 0.33 ms, its volume is equal to
0.0845% of the initial volume of both droplets. The coalesced drop-
let mass oscillates before it equilibrates. The kinetic energy is
partly dissipated into the internal motion within the droplet and,
as it will be shown later to a much smaller extent, in the gas flow
inside the gap.

3.3. Coalescence of two droplets, case C, high We number impact

In case C coalescence occurs just as in the previous case B, be-
cause the kinetic energy of the droplets seems to be high enough
to ‘squeeze out’ the intermediate air film between them. The differ-
ence between the two cases is that now the two droplets coalesce
almost immediately after their initial contact. Another characteris-
tic of the present case is that coalescence of the two initial droplets
is followed by separation, indicating that the present Weber num-
ber of 61.4 is above the critical number separating the regions of
coalescence and separation. After coalescence, the merged droplets
continue to deform in such a way as to form a boundary ring with a
thin connecting liquid disc inside (Fig. 6, t = 0.45 ms). At t = 0.6 ms,
1.12

0.240.08ms 0.31

0.80 1.39

simulation

Fig. 4. Time evolution of two colliding droplets for Case B
most of the liquid mass has been accumulated in the boundary ring
and a hole is created at the center of the thin disc. After t = 0.6 ms,
the radial velocity reverses its direction towards the center of the
disc, the central hole fills up and the ring shape is gradually trans-
formed to a bell shape, extending in length in the axial direction in
agreement with the experiments (Fig. 6, t = 0.85 ms and t = 1.2 ms).
Due to the outward liquid motion along the axis of symmetry, a lig-
ament connecting the two boundary droplets is formed and its
length is increasing with time (Fig. 6, t = 1.95 ms). The tip droplets
grow in size and the ligament becomes thinner up to t = 2.2 ms
(around t = 2.0 ms according to experiments) when it is cut off
from the boundary droplets. Subsequently surface tension effects
transform the ligament to a satellite droplet (Fig. 6, t = 2.50 ms)
in agreement with the experimental data of Qian and Law [11].

The velocity and pressure field at various time instants is shown
in Fig. 7. The value of the maximum gas and liquid jet velocities is
1041% and 457% of the droplet’s impact velocity, respectively. The
maximum pressure developed is 407%. Air bubbles are also trapped
within the liquid phase but their volume is equal to 0.02% of the
initial volume of both droplets (Fig. 6, t = 0.05 ms), less than in
the previous case. Each of the two main droplets has a volume of
49.36% of the initial total volume while the small satellite droplet
has a volume of 1.27% of the total. The diameters are 99.57% Do and
29.4% Do, respectively.

3.4. Coalescence and separation of two droplets, case D, higher We
number impact

Experimental results for this case don’t exist. Just like case C
the two droplets coalesce at once after their contact, forming a
shape like ‘donut’ at the time of maximum deformation (Fig. 8,
t = 0.38 ms). Subsequently, the coalesced droplet recedes towards
the symmetry axis and elongates along it, forming a cylindrical
ligament between the two boundary droplets. Due to the same
mechanism as in case C, the merged droplet separates in two
end droplets and one central satellite droplet at t = 2.90 ms.
The difference between case C and D is the extent of ligament’s
deformation. In the present case, the length of the ligament just
before it pinches off from the boundary droplets is bigger and
equal to 6.76 Ro at t = 2.06 ms, compared to 2.07 Ro at
t = 2.16 ms for case C. Also the size of the central satellite droplet
is comparable to the size of the two end main droplets, whilst in
0.370.35 0.53

experiments

s

(We = 19.4, Re = 158); experiment of Qian and Law.



Fig. 5. Pressure and velocity field evolution for Case B (We = 19.4, Re = 158).
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Fig. 6. Time evolution of collision for Case C (We = 61.4, Re = 296.5); experiment of Qian and Law.
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case C it was much smaller. Each of the two end droplets has a
volume of around 31.2% of the initial total volume of the two
droplets. The satellite droplet has a volume of around 37.6% of
the initial total volume. The corresponding diameters are 85.46
Do and 90.94% Do, respectively.

The velocity and pressure fields are shown in Fig. 9. The value of
the maximum gas and liquid jet velocities is around 1011% and
478% of the droplet’s impact relative velocity, respectively. The
maximum pressure developed is 299. The values of maximum
non-dimensional gas and liquid velocities in cases C and D are
almost equal, indicating the similarity of the coalescence process
after impact, for high Weber number impacts. The volume of the
air bubble entrapped is equal to 0.016% of the initial volume of
both droplets.



Fig. 7. Pressure and velocity field evolution for Case C (We = 61.4, Re = 296.5).
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Fig. 9. Pressure and velocity field evolution for Case D (We = 122.8, Re = 423.76).
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4. Characteristics of the flow field

4.1. Time evolution of surface and kinetic energy of droplets

Fig. 10 shows the evolution of kinetic (Ek) and surface (Es) ener-
gies of the colliding droplets as a function of time. Ek is defined as
R[0.5qliq(aVcell)(2U0)2 ] where the summation is taken over the
whole computational domain and Es = r (Area), where (Area) is
the surface of the liquid phase. Before coalescence the total surface
of the colliding droplets is taken into account in the surface energy
calculations. After coalescence only the external surface of the
merged droplet is considered; therefore coalescence is indicated
by the discontinuous change of the surface energy.

In cases A and B (for which the ratio of the initial surface energy
to kinetic is 5.74 and 2.54, respectively, i.e., larger than one) during
the approaching phase, the surface energy of the two droplets
increases whilst the kinetic energy decreases, both obtaining max-
imum and minimum values, respectively, at the time of maximum
droplet deformation. Then for case A the kinetic energy recovers at
the expense of surface energy while for case B it is almost lost on
coalescence. In case B upon coalescence, there is a loss of surface
energy; afterwards it tends to be stabilised at 80% of the initial sur-
face energy while the kinetic energy approaches zero value. In
cases C and D (for which the ratio of the initial surface energy to
kinetic is 0.803 and 0.401, respectively, i.e., lower than one), upon
droplet contact, there is an almost immediate coalescence with a
small loss of surface energy. After coalescence the surface energy
increases at the expense of the kinetic energy and then after reach-
ing its maximum value, it tends to a constant value around unity in
an oscillatory way, whilst the corresponding values of the kinetic
energy tend to zero, indicating that the kinetic energy is lost.

According to Jiang et al. [10] the maximum droplet deformation
Smax is independent of the energy dissipation, (expressed by the
loss coefficient ‘‘a”) and of the Reynolds number and depends only
on Weber number, as shown in Eq. (12)

Smax

So
¼ 1þ ð1� aÞ �We=48 ð12Þ

where So the initial surface and ‘‘a” = 0.5.
This conclusion contradicts recent results by Willis et al. [18]

and Dai and Schmidt [19], which indicate that the loss coefficient
‘‘a” is Reynolds dependent. In order to resolve this contradiction,
a parametric study was carried out as shown by cases E, F, G to
Q in Table 1, keeping the Weber number constant and changing
the Reynolds number. Fig. 11 presents the dimensionless viscous
dissipation rate (hU/ht)/(pqliqRo

2Uo
3) as a function of the dimen-

sionless time t/T1 both in the gas and liquid phases, where U is
the dissipated energy as defined by Dai and Schmidt [19]. The re-
sults shown in Fig. 11a indicate that for the same Weber number
the loss of kinetic energy takes place mainly in the liquid phase
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and the small part that it is lost in the gas phase increases with the
Reynolds number. Fig. 11b shows the effect of the Weber number
on the energy dissipation with almost constant Reynolds number.
It can be seen that the energy lost in the gas phase is decreasing
with the increase of the Weber number. It is interesting to notice
that the dissipated energy takes place within one non-dimensional
time (T1 = 2Ro/Uo), as well as most of the loss of the kinetic energy.

Assuming that the loss coefficient ‘‘a” is Reynolds number
dependent and using the results of the simulated cases E to Q of
Table 1, a relation of the maximum deformation with Reynolds
number can be found, shown in Fig. 11c. The loss coefficient ‘‘a”
can be calculated from a best fit curve and the following relation
is proposed (valid for We = 61.4).

a ¼ 1:41�Re�1=8 ð13Þ

Eq. (13) shows that the loss coefficient ‘‘a” decreases with
increasing Reynolds number and its influence diminishes at large
Reynolds numbers, indicating that Jiang’s [10] conclusion that
the energy dissipation in period T1 is independent of Reynolds
number (or viscocity) is indeed valid for high Reynolds numbers.

4.2. Mechanism of ligament breakup and satellite droplet formation

Just before ligament pinch off and satellite droplet formation,
the liquid has small velocity from the centre of the ligament to-
wards its edges (Fig. 12a, t = 2.21 ms and Fig. 12b, t = 2.16 ms)
and a local maximum of pressure is built-up. The pressure near
the seat of the pinch off is maximum (Fig. 12c, t = 2.21 ms), equal
to Cp = 0.8; towards the boundary droplet the pressure gradient is
very high and the liquid velocity which is very small and negative
(defined as positive if directed towards the centre of impact and as
negative in the opposite direction) increases in magnitude and be-
comes equal to �0.8U0. This results in pumping liquid into the
boundary droplets (Fig. 12a, t = 2.21 ms) thinning the ligament
and creating a neck at the position of maximum velocity of high
curvature. It is of importance to notice from Fig. 12a and c, that
the two maxima of pressure and velocity are found at different
locations. At the moment of ligament pinch off (Fig. 12a,
t = 2.22 ms), the liquid velocity draining the neck area is very high
(almost �2U0), whilst the almost zero velocity towards the loca-
tion of maximum pressure existing at about time t = 2.21 ms,
reverses sign (becomes positive) and is now directed towards
the central part of the ligament. This contributes to both the
ligament detachment and its subsequent shrinkage as well as to
the further increase of the maximum pressure in the area, the loca-
tion of which is shifted to the central part of the ligament
(Cp = 1)(t = 2.23 ms). After detachment of the ligament from the
boundary droplet, the velocity towards the ligament center in-
creases substantially as shown in Fig. 12a (t = 2.23 ms) as well as
the pressure, Fig. 12c, t = 2.23 ms. The shrinkage of the ligament
continues until the formation of the satellite droplet.

Fig. 13 indicates the linear dimensions of the ligament in the
axial (length) and radial (width) directions with time. The length
of the ligament for case C (lower We number) is smaller compared
to case D (higher We number) and the same stands for the width.
At the moment of pinch off, the non-dimensional length shown in
Fig. 13a for case D is 3.5 times larger compared to case C. After
pinch off, the length of the ligament is reducing at very fast rate,
whilst at the same time the width is increasing, due to ligament
shrinkage. The ligament diameter at pinch off is 2.5 times higher
in case D compared to case C but the ratio of ligament length to
diameter is for case C 70% of that of case D.

5. Conclusions

The flow field arising from the head-on binary droplet collision
between equal-sized droplets was numerically studied using a
finite volume technique incorporating the volume of fluid (V.O.F)
methodology and an adaptive local grid refinement approach. A
higher order discretization scheme was found to be necessary for
the numerical solution of the transport equation for the V.O.F vari-
able in order to accurately track the droplet–gas interface. Also the
use of two V.O.F indicators allowed the prediction of the collision
process up to coalescence time, that was specified by the
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experimental data. The numerical results agree reasonably well
with the corresponding experimental data. The V.O.F method was
capable of predicting the details of the flow, like gas bubble entrap-
ment, droplet deformation, gas and liquid jetting and satellite drop-
let formation. When stretching separation occurs, the size of the
central satellite droplet increases with the Weber number. Liga-
ment pinch off from the end droplets occurs due to the increased
pressure at the ligaments ends and the associated flow drainage to-
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wards to ligament’s edges at first place and at subsequent times to
ligament’s central part (flow reversal). Initially droplet kinetic en-
ergy upon collision is transformed into surface energy while later
the opposite occurs in an oscillatory way. Loss of energy due to vis-
cous dissipation is mainly due to viscous losses within the liquid
phase. The dissipation loss coefficient is Reynolds number depen-
dent but this dependency becomes insignificant at large Reynolds
numbers.
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